232 research outputs found

    Separated Fringe Packet Observations with the CHARA Array III. The Very High Eccentricity Binary HR 7345

    Get PDF
    After an eleven year observing campaign, we present the combined visual{spectroscopic orbit of the formerly unremarkable bright star HR 7345 (HD 181655, HIP 94981, GJ 754.2). Using the Separated Fringe Packet (SFP) method with the CHARA Array, we were able to determine a difficult to complete orbital period of 331.609 +/- 0.004 days. The 11 month period causes the system to be hidden from interferometric view behind the Sun for 3 years at a time. Due to the high eccentricity orbit of about 90% of a year, after 2018 January the periastron phase will not be observable again until late 2021. Hindered by its extremely high eccentricity of 0.9322 +/- 0.0001, the double-lined spectroscopic phase of HR 7345 is observable for 15 days. Such a high eccentricity for HR 7345 places it among the most eccentric systems in catalogs of both visual and spectroscopic orbits. For this system we determine nearly identical component masses of 0.941 +/- 0.076 Msun and 0.926 +/- 0.075 Msun as well as an orbital parallax of 41.08 +/- 0.77 mas.Comment: 20 pages, 3 figures, 4 table

    MYSTIC: Michigan Young STar Imager at CHARA

    Get PDF
    We present the design for MYSTIC, the Michigan Young STar Imager at CHARA. MYSTIC will be a K-band, cryogenic, 6-beam combiner for the Georgia State University CHARA telescope array. The design follows the image-plane combination scheme of the MIRC instrument where single-mode fibers bring starlight into a non-redundant fringe pattern to feed a spectrograph. Beams will be injected in polarization-maintaining fibers outside the cryogenic dewar and then be transported through a vacuum feedthrough into the ~220K cold volume where combination is achieved and the light is dispersed. We will use a C-RED One camera (First Light Imaging) based on the eAPD SAPHIRA detector to allow for near-photon-counting performance. We also intend to support a 4-telescope mode using a leftover integrated optics component designed for the VLTI-GRAVITY experiment, allowing better sensitivity for the faintest targets. Our primary science driver motivation is to image disks around young stars in order to better understand planet formation and how forming planets might influence disk structures.Comment: Presented at the 2018 SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US

    Radii, masses, and ages of 18 bright stars using interferometry and new estimations of exoplanetary parameters

    Full text link
    Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the H-R diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of stars hosting planets are required elements for studying exoplanetary systems. We aim at determining accurate parameters of a set of 18 bright exoplanet host and potential host stars from interferometric measurements, photometry, and stellar models. Using the VEGA/CHARA interferometer, we measured the angular diameters of 18 stars, ten of which host exoplanets. We combined them with their distances to estimate their radii. We used photometry to derive their bolometric flux and, then, their effective temperature and luminosity to place them on the H-R diagram. We then used the PARSEC models to derive their best fit ages and masses, with error bars derived from MC calculations. Our interferometric measurements lead to an average of 1.9% uncertainty on angular diameters and 3% on stellar radii. There is good agreement between measured and indirect estimations of angular diameters (from SED fitting or SB relations) for MS stars, but not as good for more evolved stars. For each star, we provide a likelihood map in the mass-age plane; typically, two distinct sets of solutions appear (an old and a young age). The errors on the ages and masses that we provide account for the metallicity uncertainties, which are often neglected by other works. From measurements of its radius and density, we also provide the mass of 55 Cnc independently of models. From the stellar masses, we provide new estimates of semi-major axes and minimum masses of exoplanets with reliable uncertainties. We also derive the radius, density, and mass of 55 Cnc e, a super-Earth that transits its stellar host. Our exoplanetary parameters reflect the known population of exoplanets.Comment: 23 pages, 9 figures, published in A&A. (This version includes proof corrections.

    Michigan Infrared Combiner (MIRC): IR imaging with the CHARA Array

    Get PDF
    We present the design of the Michigan Infra-Red Combiner (MIRC). MIRC is planned for deployment at the Georgia State University CHARA array to simultaneously combine all six telescope beams in an image-plane combiner. The novel design incorporates spatial-filtering with single-mode fiber optics, a synthetic (densified) pupil, and a low-resolution spectrometer to allow good calibration and efficient aperture synthesis imaging in the near-infrared. In addition, the focalization and spectrometer optics can accommodate an integrated optics component with minimal re-alignment. The MIRC concept can be scaled-up for interferometer arrays with more telescopes

    Separated Fringe Packet Observations with the CHARA Array II: ω\omega Andromeda, HD 178911, and {\xi} Cephei

    Full text link
    When observed with optical long-baseline interferometers (OLBI), components of a binary star which are sufficiently separated produce their own interferometric fringe packets; these are referred to as Separated Fringe Packet (SFP) binaries. These SFP binaries can overlap in angular separation with the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and the separated fringe packets can provide an accurate vector separation. In this paper, we apply the SFP approach to {\omega} Andromeda, HD 178911, and {\xi} Cephei with the CLIMB three-beam combiner at the CHARA Array. For these systems we determine component masses and parallax of 0.963±{\pm}0.049 M⊙M_{\odot} and 0.860±{\pm}0.051 M⊙M_{\odot} and 39.54±{\pm}1.85 milliarcseconds (mas) for {\omega} Andromeda, for HD 178911 of 0.802±{\pm}0.055 M⊙M_{\odot} and 0.622±{\pm}0.053 M⊙M_{\odot} with 28.26±{\pm}1.70 mas, and masses of 1.045±{\pm}0.031 M⊙M_{\odot} and 0.408±{\pm}0.066 M⊙M_{\odot} and 38.10±{\pm}2.81 mas for {\xi} Cephei.Comment: 28 pages, 4 tables, 6 figures, accepted to AJ May 201

    Validation of the Exoplanet Kepler-21b using PAVO/CHARA Long-Baseline Interferometry

    Get PDF
    We present long-baseline interferometry of the Kepler exoplanet host star HD179070 (Kepler-21) using the PAVO beam combiner at the CHARA Array. The visibility data are consistent with a single star and exclude stellar companions at separations ~1-1000 mas (~ 0.1-113 AU) and contrasts < 3.5 magnitudes. This result supports the validation of the 1.6 R_{earth} exoplanet Kepler-21b by Howell et al. (2012) and complements the constraints set by adaptive optics imaging, speckle interferometry, and radial velocity observations to rule out false-positives due to stellar companions. We conclude that long-baseline interferometry has strong potential to validate transiting extrasolar planets, particularly for future projects aimed at brighter stars and for host stars where radial velocity follow-up is not available.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letters; v2: minor changes added in proo

    Cepheid distances from the SpectroPhoto-Interferometry of Pulsating Stars (SPIPS) - Application to the prototypes delta Cep and eta Aql

    Full text link
    The parallax of pulsation, and its implementations such as the Baade-Wesselink method and the infrared surface bright- ness technique, is an elegant method to determine distances of pulsating stars in a quasi-geometrical way. However, these classical implementations in general only use a subset of the available observational data. Freedman & Madore (2010) suggested a more physical approach in the implementation of the parallax of pulsation in order to treat all available data. We present a global and model-based parallax-of-pulsation method that enables including any type of observational data in a consistent model fit, the SpectroPhoto-Interferometric modeling of Pulsating Stars (SPIPS). We implemented a simple model consisting of a pulsating sphere with a varying effective temperature and a combina- tion of atmospheric model grids to globally fit radial velocities, spectroscopic data, and interferometric angular diameters. We also parametrized (and adjusted) the reddening and the contribution of the circumstellar envelopes in the near-infrared photometric and interferometric measurements. We show the successful application of the method to two stars: delta Cep and eta Aql. The agreement of all data fitted by a single model confirms the validity of the method. Derived parameters are compatible with publish values, but with a higher level of confidence. The SPIPS algorithm combines all the available observables (radial velocimetry, interferometry, and photometry) to estimate the physical parameters of the star (ratio distance/ p-factor, Teff, presence of infrared excess, color excess, etc). The statistical precision is improved (compared to other methods) thanks to the large number of data taken into account, the accuracy is improved by using consistent physical modeling and the reliability of the derived parameters is strengthened thanks to the redundancy in the data.Comment: 10 pages, 4 figures, A&A in pres

    The Membership and Distance of the Open Cluster Collinder 419

    Full text link
    The young open cluster Collinder 419 surrounds the massive O star, HD 193322, that is itself a remarkable multiple star system containing at least four components. Here we present a discussion of the cluster distance based upon new spectral classifications of the brighter members, UBV photometry, and an analysis of astrometric and photometric data from the UCAC3 and 2MASS catalogs. We determine an average cluster reddening of E(B-V)=0.37 +- 0.05 mag and a cluster distance of 741 +- 36 pc. The cluster probably contains some very young stars that may include a reddened M3 III star, IRAS~20161+4035
    • …
    corecore